
 The QCD transition temperature: results with physical masses in the continuum limit II

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP06(2009)088

(http://iopscience.iop.org/1126-6708/2009/06/088)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 09:12

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/06
http://iopscience.iop.org/1126-6708/2009/06/088/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
6
(
2
0
0
9
)
0
8
8

Published by IOP Publishing for SISSA

Received: April 2, 2009

Revised: May 27, 2009

Accepted: June 5, 2009

Published: June 29, 2009

The QCD transition temperature: results with

physical masses in the continuum limit II
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1 Introduction

There is a continuously high interest in determining properties of the high temperature

quark gluon matter. One of the major goals is to determine the temperature scale, where

the ordinary, hadronic matter is supposed to undergo a transition to the high temperature

phase. Since this transition seems to be a continuous one [1], there is no unambiguous

temperature, where the transition takes place. In general different observables may have

their characteristic points (e.g. peak position, inflection point) at different temperature

values. These temperatures are completely well defined and in principle can be calculated

with an arbitrary precision.

Current lattice simulations tend to disagree on these characteristic temperature scales.

On the one hand the published results of the RBC-Bielefeld collaboration found [2]

Tc = 192(4)(7) MeV (1.1)

for the transition temperature. By considering different observables they obtained transi-

tion temperature values that were consistent with each other. In later works of the group

(which has been enlargened to ’hotQCD’ collaboration in the meantime) the analysis has

been extended to other fermion actions and smaller lattice spacings [3–5]. The results
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presented in these works seem to confirm those of [2], in particular [4] concluded as: ”The

preliminary results of the hotQCD collaboration indicate that the crossover region for both

deconfinement and chiral symmetry restoration lie in the range T = (185-195) MeV”.

On the other hand the results that we presented in [6] are quite different. Different

observables led to significantly different transition temperatures and these temperature

values were considerably lower than the values of the ’hotQCD’ collaboration. For example

for the transition temperature defined by the peak position of the renormalized chiral

susceptibility we obtained

Tc(χψ̄ψ) = 151(3)(3) MeV, (1.2)

which is more than 20% lower than the transition temperature of [2] (see equation (1.1)).

The differences between the findings of the collaborations can be made even more transpar-

ent and thus more disturbing by comparing the temperature dependence of the observables.

We have found discrepancy in all quantities that we have considered so far, so it will be

most probably present in the equation of state, too.

Relating the above temperature scales to experimental observables of heavy-ion colli-

sions is a highly nontrivial task. Among other things one has to take into account that most

lattice calculations are carried out with periodic boundary condition, which is convenient

for the computations, but rather far from the experimental setup. An exploratory quenched

study suggests [7] that critical temperatures with realistic boundary conditions can be up

to 30 MeV larger than the values, which are measured in conventional lattice calculations.

The aim of the present paper is to improve our previous results [6] and to find some

hints for the origin of the discrepancies discussed above. We present here three significant

improvements:

• we extend our zero temperature simulations by simulating directly with the physical

values of the quark masses. This is achieved by tuning the Goldstone pion and kaon

masses to their physical values.

• In order to verify that our results are independent of the physical quantity we choose

to set the scale we measured five experimentally well-known quantities.

• We extend our finite temperature simulations by taking an even smaller lattice spac-

ing (Nt = 12 and at one point even Nt=16) than the smallest one we had in [6].

The zero temperature results are presented in section 2. The finite temperature results

are to be found in section 3, where a comparison with the latest results of the ’hotQCD’

collaboration is also done.

2 Zero temperature simulations

The primary role of zero temperature simulations is that they are used to convert the

dimensionless temperature of the lattice to physical units. Therefore, when looking for

systematic errors, one has to pay as much attention to these simulations as to the finite
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temperature ones. In addition, zero temperature runs are used to renormalize certain

quantities in order to obtain a meaningful continuum limit. Using these zero temperature

simulations one can also obtain the so called Lines of Constant Physics (LCP), which are

constraints among the lattice parameters. In our case the LCP tells us how to tune the bare

light quark masses (mud) and the bare strange quark mass (ms) as the function of the gauge

coupling (β) so that certain hadronic quantities on the lattice take the same values as in the

experiments. In [6] we have determined the LCP using three hadronic quantities: the pion

and kaon masses and the kaon decay constant. When we say that the light or strange quark

masses are set to their physical values, we mean that they are on this LCP (mLCP
ud

or mLCP
s ).

One shortcoming of essentially all lattice calculations these days is that the zero tem-

perature runs were done at nonphysical light quark masses, only the strange quark mass

was fixed to its physical value. In [6] we had carried out zero temperature simulations at

four different points with nonphysical light quark masses at each lattice spacing and made

an extrapolation down to the physical point. It is hard to estimate the systematic errors of

such extrapolations. Obviously such errors might also influence the determination of our

LCP. In this paper we will use only the LCP determined using extrapolations in [6]. In

order to check the size of the systematics of these chiral extrapolations, we decided to carry

out new simulations directly at the physical point for the same lattice spacings as in [6]. As

it will be shown our approach of [6] was very accurate.

2.1 Action, algorithm

The lattice action is the same as we used in [6]. On the algorithmic side we have made

couple of improvements. We use Omelyan integration scheme [8] to integrate the evolution

equations of Rational Hybrid Monte Carlo (RHMC) (for details on the RHMC algorithm

see [9]). The smallest two poles of the rational approximation of the light quark determi-

nant are put to a larger integration timescale, than the remaining ones. The solver residual

is set to ǫff = 10−5, when calculating the fermion force in the RHMC, and ǫact = 10−8 in the

RHMC action. The code works mostly in float precision, while smaller than 10−6 precisions

are reached by using mixed precision inverters. The updates of the links and momenta are

done in very large precision (80-bit or more), which results in an exactly reversible algo-

rithm. The reversibility is thus not effected by the tolerance of the fermion force solver (ǫff).

Our code is ported to two types of architectures: Intel PC equipped with Graphical

Processing Units (see [10]) and BlueGene/P.

2.2 Simulation points

In table 1 we give the number of trajectories for our zero temperature ensembles. These

runs are done at the physical values of the light and strange quark masses. We also show

the quark masses of our old runs, which were used to carry out the chiral extrapolations

to the physical point.

The lattice volumes were chosen so that the continuum finite volume corrections were

below 0.5% for the pion and kaon masses and decay constants [11]. We measured gauge

observables, chiral condensates and susceptibilities after every, and hadron correlators after

every tenth trajectory. We performed correlated fits with the hadron propagators by using
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β Nt ×N3
s # traj mud/m

LCP
ud

mud/m
LCP
ud

in [6]

3.45 32 × 243 1500 1 3, 5, 7, 9

3.55 32 × 243 3000 1 3.5, 5, 7, 9

3.67 48 × 323 1500 1 4, 6, 7.5, 9.5

3.75 48 × 403 1500 1 4, 6, 8, 10

3.85 64 × 483 1500 1 –

Table 1. Gauge coupling, lattice size, number of trajectories for our zero temperature simulation

points. The light and strange quark masses are set to their physical values, ie. they are on the LCP

as described in the text. Next column shows, which light quark masses were used in [6] to carry

out the chiral extrapolations.

Figure 1. Chiral extrapolation vs. direct simulation of the pseudoscalar decay constants and masses

for β = 3.55. Since this point has the highest statistics, any mismatch between the extrapolation

and the direct result would be most pronounced here. We do not observe such a mismatch. Black

points are data from [6], blue lines are our fit functions also from [6], which were used to extrapolate

to the physical point, red points are the results of the new simulations at the physical point. All

values are in lattice units.

the appropriate formulas for staggered mesons and baryons as described in [12]. When

extracting nucleon masses, we observed similar ambiguities when using different quark

sources as described in [13]. We decided not to use them in the further analysis.

2.3 Checking chiral extrapolations

First let us take a look at the pion and kaon masses (see figure 1). In [6] we used different

fit formulas to extrapolate to the physical point: for the kaon mass square the fit function

was linear in the quark mass, for the pion it was cubic. For the decay constants we used a

linear function plus a logarithmic mud logmud term with unconstrained coefficients. Com-

paring the chiral extrapolations with results of the direct simulations we find a remarkable

agreement. For all four quantities the difference is on the 1% level for all lattice spacings.
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β 3.45 3.55 3.67 3.75 3.85

a(mπ)[fm] 0.2832(2) 0.2193(1) 0.1548(2) 0.1267(2) 0.1002(1)

a(mK)[fm] 0.2782(2) 0.2153(1) 0.1524(1) 0.1246(1) 0.0991(1)

a(fK)[fm] 0.286(2) 0.217(1) 0.153(1) 0.123(1) 0.097(1)

a(avg)[fm] 0.2824(6) 0.2173(4) 0.1535(3) 0.1249(3) 0.0989(2)

err[%] 1.5 0.9 0.9 1.4 1.5

Table 2. Lattice spacings obtained from different quantities (pion and kaon masses and the kaon

decay constant as well as the average of the three ). Errors in parentheses are the quadratic sum of

statistical and — in case of fK – experimental errors. The last row shows the maximum deviation

from the average spacing, which we consider as the systematic error of our scale setting.

We have also studied the effect of our extrapolations in case of the additive renor-

malization constant of the chiral susceptibility. One expects that a slight change in the

additive constant does not change the position of a peak and, indeed the uncertainty of

the extrapolation turned out to be negligible on the location of the transition temperature

(see the finite temperature section).

2.4 Setting the scale

In [6] we have determined the Lines of Constant Physics and the scale using three quantities:

kaon and pion mass and kaon decay constant. There we were using chiral extrapolations.

Now we can check directly at the physical point, how consistent are the scales obtained

from these three quantities (see table 2). We take mπ = 135 MeV, mK = 495 MeV and

fK = 155.5 MeV for the physical values [14].1 If the determination of the LCP in [6] were

completely correct, then the three different quantities would give the same lattice spacing.

As it can be seen the deviation from the average of the three scales is always less than

2%. In [6] we have claimed a 2% uncertainty in the scale setting, so our current findings

completely justify the previous results.

We will use this average scale in our finite temperature analysis and consider this 2% as

an uncertainty of the transition temperature arising from the zero temperature simulations.

In the following subsections we will present some results for zero temperature ob-

servables: hadron and quark masses and decay constants. In these cases we attempt to

eliminate even this small 2% systematic error. On the ensembles of table 1 in addition to

our measurements we measure propagators, where the quark masses are set to ±20% of the

physical strange quark mass and ±10% of the physical light quark mass. By interpolating

between these quark mass values we look for those strange and light quark mass param-

eters, where mπ/fK and mK/fK take their experimental values exactly. The so obtained

correction to the quark masses has turned out to be always less than 7%. At this corrected

point we measure the ratios of various observables. This procedure takes into account only

the change in the operator due to the variation in the quark mass, the slight change in the

1In [6] we used the Particle Data Group [15] value of fK = 159.8 MeV. Note, however, that in the last

2.5 years the Particle Data Group has reduced the central value of fK by about 3%, which [14] reduces our

Tc values in physical units by the same amount.
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Figure 2. Mass squared difference of the non-Goldstone pions (i5 and ij) and the Goldstone pion

as a function of the lattice spacing squared.

background gauge field is neglected. However, as we checked it for a few points, in ratios of

observables this effect largely cancels and the uncertainty related to this procedure remains

far below our statistical accuracy.

2.5 Taste violation

The taste symmetry breaking of the staggered fermion discretization splits up the originally

degenerate masses of the pion multiplet, leaving only one pion massless in the chiral limit.

Taste symmetry violation has to vanish in the continuum limit, otherwise the staggered

discretization would fail to be a proper fermion discretization. Therefore, it is important

to check whether the pion splitting vanishes when carrying out a continuum extrapolation

using the available lattice spacings. This extrapolation provides a useful hint where the

scaling regime is expected to start. We take two representatives of the non-Goldstone pions:

i5/MVII and ij/MVIII (the notations are that of MILC and [12]). Let us take a look at the

quadratic mass difference of the non-Goldstone pions and the Goldstone pion as a function

of the lattice spacing squared (see figure 2). One can clearly see that the taste violation de-

creases with decreasing lattice spacing. Moreover we can also observe that lattice spacings

which are larger than a ∼ 0.15 fm (the corresponding critical temperature in lattice units is

1/Nt ∼ 1/8) are not in the a2-scaling regime in the case of these quantities. The taste viola-

tion for the three finest lattice spacings can be extrapolated to zero lattice spacing: for both

type of non-Goldstone pions the splitting is consistent with zero in the continuum limit.

2.6 Hadron masses, ms/mud and fK/fπ

A necessary condition for the correctness of the finite temperature results is that zero

temperature observables in the continuum limit are consistent with experiments. Moreover,

the lattice spacing dependence of the zero temperature observables can give a hint on the

lattice spacing range, where lattice artefacts are expected to scale as a2.
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Figure 3. Left panel: masses of Ω baryon, φ(1020) meson and K∗(892) meson in MeV on our

four finest lattices as a function of the lattice spacing squared. Right panel: quark mass ratio and

fK/fπ for all five ensembles. See text for a detailed explanation.

Let us first take a look at various hadron masses (see left panel of figure 3). At the top

of the figure the mass of the Ω baryon is plotted as a function of the lattice spacing squared.

The red band is the experimental value of the Ω mass together with its uncertainty (to

which the experimental uncertainty of our scale fixing quantity fK also contributes). Our

four finest lattice spacings are nicely consistent with the experiments. This fact confirms

the correctness of the fK-based scale setting procedure. In other words, we have shown

that performing the scale setting with the Ω mass would give the same continuum values

for Tc in physical units.

The φ(1020) meson mass is plotted in the middle. The open and solid symbols corre-

spond to two different vector meson operators (MIII and MIV using the notations of [12]),

they are supposed to give the same mass in the continuum limit. We use only the con-

nected part of the operators when evaluating the propagators (the disconnected part is very

expensive to calculate; however, as large scale T=0 simulations show [16], omitting the dis-

connected part for φ(1020) could provide the proper scale, the uncertainty related to this

choice is subdominant). The plot shows also an agreement with the experiment (red band).

The lower plot shows the K∗(892) vector meson mass. Open and solid symbols are

the two vector meson operators, as in the case of φ(1020). The agreement is somewhat

worse than for the other two masses. However one has to keep in mind that at the physical

point in our boxes the strong decay of K∗(892) is kinematically allowed. Our operators are

supposed to have negligibly small coupling to scattering states and couple mostly to the

resonance. The resonance energy level at a given volume is not necessarily the central value

of the resonance (mK∗), but it might be some other value within the resonance distribution

(which has ΓK∗ width). Therefore, beside the red band, which is the experimental value
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of the K∗(892) mass, we also draw a 2ΓK∗ wide magenta band inside which the resonance

levels are expected to appear.

The right panel of figure 3 shows the ratio of the strange and light quark masses. Note,

that this is not the ratio along the LCP (which was fixed to mLCP
s /mLCP

ud
= 27.3), but the

ratio of the quark masses after carrying out the correction to the LCP as described in sub-

section 2.4. As one can clearly see there is no observable lattice spacing dependence for our

three smallest lattice spacings. Therefore it is completely justified to take the result on the

finest lattice spacing as the continuum estimate for the quark mass ratio: ms/mud = 28.15.

The statistical error is on the 0.4% level, the systematic uncertainties are somewhat larger.

On the lower part of the right panel we plot the ratio of kaon and pion decay constants

against the lattice spacing squared for all five ensembles. The red band is the current

best estimate for fK/fπ including the uncertainty. Opened symbols are the original lattice

data, whereas the solid ones contain the continuum limit finite volume corrections [11].

For the three finest lattice spacings we can observe a clear decreasing tendency. An ex-

trapolation with an a2 scaling function yields fK/fπ = 1.181 in the continuum limit. The

statistical error of fK/fπ is on the 0.3% level. The systematic uncertainties are of the same

order of magnitude.

A detailed analysis of the systematic uncertainties of ms/mud as well as fK/fπ is quite

interesting from the T=0 physics point of view and will be published elsewhere [17]. In

this forthcoming publication we discuss the masses of the Ω baryon, the K∗(892) meson

and the φ(1020) meson in detail, too.

The basic message of this subsection can be summarized as follows. Using an fK based

scale setting procedure (see subsection 2.4), the masses of Ω, K∗(892), φ(1020) and the

pion decay constant are consistent with their experimental values on our finest lattices.

This implies that independently of which of these quantities is used for scale setting, we

would obtain the same results in the continuum limit.

2.7 Static quark potential

A popular way to fix the scale in lattice QCD is to use quantities related to the static quark

potential V (r), like the string tension or Sommer scale [19]. The major advantage compared

to other methods is that there are no ambiguities in the construction of operators due to

staggered taste violation, since the Wilson-loops are built up only from the gauge fields. A

disadvantage is that on coarse lattices (which are usual in thermodynamical calculations)

the static quark potential determination is burdened by sizeable systematics. It is hard to

extract ground state energy levels of the static quark-antiquark pair (compared to mass

extraction in hadron spectroscopy), since the signal disappears quickly in the noise.

We use the following gauge link smearing recipe (applied to thin links) to increase

our signal/noise ratio. We have Wilson loops along the axis (spacing 1) and along three

off-axis directions (spacings
√

2,
√

3,
√

5). The spatial links are smeared by 30 steps of

APE smearing [20], this reduces the excited state contamination while keeping the ground

state energy intact for all distances. We also smear the timelike links by 3 steps of HYP

smearing [21], keeping all the intermediate steps, too. This decreases the noise substantially,

however distorts the potential for small distances. By comparing the results of zero, one,

– 8 –



J
H
E
P
0
6
(
2
0
0
9
)
0
8
8

Figure 4. Left panel: the static quark force multiplied by the distance squared for three different

smearing levels. The horizontal line corresponds to 1.65, which value defines the Sommer-scale.

Right panel: Sommer-scale in physical units as a function of the lattice spacing squared. The

dashed curves indicate the point-by-point 1-sigma band. The width of this band at a = 0 is the

quoted error in the continuum. The red band is the r0 determination from [18].

two and three steps of HYP smearing we can determine a minimal distance for each level

of HYP smearing steps, above which that smearing level can be safely used, ie. there is no

significant distortion in the potential. Let us illustrate this on the left panel of figure 4,

where the quantity r2dV/dr is plotted as a function of the distance for our finest lattice

spacing (β = 3.85). Different symbols are used for the different HYP-smearing levels.

The filled symbols indicate which smearing level was used at a given distance. For small

distances the smearing distorts the potential, there we use no smearing at all. As the

distance increases, the distortion effect becomes gradually smaller, which makes it possible

to use higher smearing levels.

The Sommer scale (r0) is defined as the distance where r2dV/dr = 1.65. We determine

dV (r)/dr (this is our primary interest and not the potential itself) from ratios of Wilson

loops, involving a derivative both in t- and r-direction. We estimate the systematic errors

as follows: beside the potential we make fits to the force itself, we consider different inter-

polating functions and different types of Wilson-loops. We use both low-order polynomials

and rational ansatzes (e.g. quadratic-divided-by-linear) to fit r2dV (r)/dr as a function of

r in the relevant range. Note that r2dV (r)/dr shows very little curvature. For our two

coarsest lattice spacings these systematics turned out to be large. We measure therefore

the r2 scale, which is defined as the point where r2dV/dr = 2. On coarse lattices it has

considerably smaller systematic errors than what r0 has. On the right panel of figure 4 we

show the lattice spacing dependence of r0, on the coarsest lattices its value was derived

from that of r2. A clear downward trend can be observed as the lattice spacing is decreased,

– 9 –
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in the continuum limit we get

r0 = 0.48(1)(1) fm. (2.1)

The first error comes from the statistical and systematic error of the r0 determination,

whereas the second is from the uncertainty of the scale determination. This is consistent

with an other staggered r0 determination [18]: r0 = 0.469(7) fm, which is the value used by

the ’hotQCD’ collaboration in their thermodynamical studies. Let us mention here that

there are other r0 determinations in the literature: 0.467(33) fm from the QCDSF collabora-

tion [22] and 0.492(6)(7) fm from PACS-CS [16]. The differences between the results suggest

the possibility that the systematic errors are underestimated in the r0 determination.

3 Finite temperature simulations

In [6] we used four lattice spacings, Nt = 4, 6, 8 and 10 to study the lattice spacing depen-

dence of thermodynamical observables. The quark masses were set to their physical values,

i.e. to mLCP
ud

and mLCP
s . In case of the transition temperatures we carried out a continuum

extrapolation based on the finest three lattices (Nt = 6, 8 and 10).

In this work we extend our finite temperature data set by simulations on Nt = 12

and 16 lattices with physical quark masses. As we have shown with our finite volume

analysis [1] the temperature dependence changes only very little in the Ns/Nt=3–5 range.

Therefore, we generated between 1500 and 3500 trajectories on 12 · 363 lattices at 18

different temperature values and on a 16 · 483 lattice at one temperature. Measurements

were made on every trajectory and 12(24) random vectors were used for the stochastic

estimation of the chiral (quark number) susceptibilites. The lattice scale range which we

examined in section 2, covers nicely the transition regime of the Nt ≤ 12 lattices. In

case of the strange quark number susceptibility we will show results for somewhat higher

temperatures (> 210 MeV on Nt = 12 and 260 MeV on Nt = 16). In this case the scale on

even finer lattices than before is needed. This was determined by the method of ref. [23].

In the following we present the results and compare them with those of the ’hotQCD’

collaboration.

3.1 Renormalized chiral susceptibility

The light quark chiral susceptibility (χψ̄ψ) is minus one times the second derivative of the

free energy density with respect to the light quark mass. It is ultraviolet divergent. In [1]

we proposed the following renormalization recipe. Since the ultraviolet divergences are

independent of the temperature, subtracting the susceptibility at zero temperature from

the susceptibility at finite temperature removes the additive divergences:

∆χψ̄ψ = χψ̄ψ(T ) − χψ̄ψ(T = 0). (3.1)

The multiplicative renormalization can be done by multiplying by the square of the bare

quark mass:

∆χψ̄ψ → m2
ud · ∆χψ̄ψ. (3.2)

– 10 –
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Figure 5. Renormalized chiral susceptibility normalized by T 4. Open colored symbols are results

on smaller volumes (with aspect ratio Ns/Nt around 3), whereas filled colored symbols are results

on larger volumes (with aspect ratio four). For comparison results of the ’hotQCD’ on Nt = 8

are also shown, they have been rescaled by an appropriate factor (see text). Note that the quark

masses used by the hotQCD collaboration are larger than their physical values.

For the interpolation of the T = 0 susceptibilty we used a rational polynomial fit to

the available points. On figure 5 we plot this renormalized chiral susceptibility normalized

by T 4 as a function of the temperature. We show results for three different lattice spacings

(Nt = 8, 10 and 12). In case of Nt = 8 and 10 we have the results on two different volumes

as well, the larger volumes are plotted with filled symbols. The finite temperature data on

Nt = 8 and 10 was taken from our old paper. The renormalization was carried out with

the new zero temperature results (see subsection 2.3). The scale has also slightly changed

due to the change in the experimental value of the fK in the Particle Data Group (see

subsection 2.4). This results in an overall ∼ 5MeV downward shift in the temperature

compared to what we reported in [6].

We see no considerable lattice artefacts, in particular the new Nt = 12 results are

consistent with the Nt = 10 ones from our old data set. A small volume dependence can

be seen in the height of the susceptibility peak, but the volume dependences of the width

and the position are not significant within the present statistics.

In order to help comparisons with other approaches we also provide the temperature

dependence for the renormalized chiral susceptibility normalized by T 2 or not normalized

by any power of T , at all (see figure 6). As it can be seen the curves are gradually shifted

to the right, resulting in increasing transition temperatures defined from the peak positions

(see table 3). This is a feature of the crossover type transition, different definitions generally

result in different temperature values.

Now let us make the comparison with the results of the ’hotQCD’ collaboration. We

consider the data of [3], which uses ’asqtad’ fermion discretization. The light quark masses

in our simulations and in the simulations of [3] are quite different. The latter uses three
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Figure 6. Comparison of the temperature dependence of the renormalized chiral susceptibility

normalized by various powers of T . Only our Nt = 12 data are shown. Different symbols correspond

to different normalizations.

times larger light quark masses than the physical, which is used in our work. Since the

renormalized chiral susceptibility depends strongly on the quark mass, there is no problem

with the fact that the height of the susceptibility is considerably larger in the simulations

of [3] than what we obtain. For convenience we multiply the results of [3] by a factor of

0.4, these points are the black circles on figure 5. The ’hotQCD’ results were simulated on

Nt = 8 lattices. We observe a huge disagreement with our data, which is in the order of

35 MeV. It is unclear whether an effect of this size can be explained only by the difference

in the quark masses. Most probably the origin is somewhere else: as we will see soon, much

less quark mass dependent quantities also show similar discrepancies.

3.2 Renormalized chiral condensate

The light quark chiral condensate (〈ψ̄ψ〉) is minus one times the first derivative of the free

energy density with respect to the light quark mass. It is ultraviolet divergent, a possible

way of removing divergences was proposed in [25]. If one assumes that the additive diver-

gences of the free energy density depend on the quark masses only through the combination

m2
ud

+ m2
s, then one can get rid of the additive divergences in 〈ψ̄ψ〉 by using the strange

quark condensate (〈s̄s〉):

∆l,s = 〈ψ̄ψ〉 − 2mud

ms

〈s̄s〉. (3.3)

The remaining multiplicative divergences can be removed by dividing with the same quan-

tity at zero temperature:

∆l,s →
∆l,s(T )

∆l,s(T = 0)
. (3.4)

– 12 –



J
H
E
P
0
6
(
2
0
0
9
)
0
8
8

Figure 7. Renormalized chiral condensate as a function of the temperature. On the left panel the

temperature is given in physical units, whereas on the right in the units of the Sommer scale (r0).

Colored opened symbols are the results on Nt = 8, 10 and 12 lattices. For comparison results of the

’hotQCD’ collaboration with two different fermion actions on Nt = 8 are also shown. Note that the

quark masses used by the hotQCD collaboration are larger than their physical values.

On figure 7 we plot this quantity as a function of the temperature. There is no

significant lattice spacing or volume dependence for lattices of Nt = 8, 10 and 12 and for

aspect ratios 3-4. For comparison we take the Nt = 8 data of the ’hotQCD’ collaboration

from [5]. Similar to the case of the chiral susceptibility we find a huge disagreement

between the curves in the transition regime. Again the shift between the curves of the

different groups is in the order of 35 MeV.

One might think that the different scale fixing methods used by the different collab-

orations are responsible for this 35 MeV discrepancy. The ’hotQCD’ collaboration uses

the Sommer scale in their scale fixing procedure, so it can be enlightening to look at our

results, if the temperature is given in units of the Sommer scale (right panel of figure 7).

The scaling is somewhat worse in terms of this quantity, however for the finest lattices the

discrepancy is still present. This does not come as a surprise, since the r0 in physical units

obtained in subsection 2.7 is perfectly consistent with the one used by the ’hotQCD’ group.

3.3 Strange quark number susceptibility

The strange quark number susceptibility (χs) is defined as minus one times the derivative of

the free energy density with respect to the square of the strange quark chemical potential.

It is conveniently normalized by T 2, by which it will asymptotically reach one as the

temperature is increased to infinity (Stefan-Boltzmann limit).

Our results on Nt = 8, 10 and 12 are shown in figure 8. We observed no volume

dependence, therefore we use the same symbols for the two different aspect ratios. There

is no significant lattice spacing dependence for temperatures smaller than ∼ 170 MeV,

whereas for higher temperatures the lattice artefacts are somewhat larger. This is expected,

– 13 –
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Figure 8. Strange quark number susceptibility normalized by T 2. Colored opened symbols are

results on Nt = 8, 10 and 12 lattices. We have an additional point on an Nt = 16 lattice at

our highest temperature. For comparison results of the ’hotQCD’ collaboration with two different

fermion actions on Nt = 8 are also shown.

since in the Stefan-Boltzmann limit the lattice artefacts are known to be large for our action.

We also have an additional point on a very fine lattice (Nt = 16) at a high temperature.

The comparison with the results of the ’hotQCD’ collaboration (see Reference [26])

brings us to a similar conclusion as for the other two quantities that we have considered

before. Around the transition point there is an approximately 20 MeV shift between the

results of the two groups. For larger than ∼ 230 MeV temperatures our finer lattices are

in good agreement with the ’hotQCD’ results.

3.4 Transition temperatures

In this subsection we present our continuum extrapolated results for the transition temper-

atures obtained from different quantities (see table 3). The first three columns contain the

transition temperatures of the renormalized chiral susceptibility, each of them normalized

differently: with T 4, T 2 and without any power of T . The peak position was determined

by fitting quadratic curves to points around the peak as explained in [6]. The first er-

ror comes from the statistical errors and from the variation of the fit range, whereas the

second error arises from the accuracy of our scale determination. As it can be clearly

seen and as it has been already shown before, different normalizations yield significantly

different peak positions.

In the next three columns the transition temperatures from the inflection point of the

renormalized chiral condensate, renormalized Polyakov loop and the strange quark number

susceptibility are given. These inflection points were obtained by fitting cubic polynomials

to the data. Systematic errors were estimated by the variation of the fit ranges.

We have also measured the width of the transition for all these observables (the defi-

nition can be found in [6]). It is found to be in the 25-30 MeV range in all cases.
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∆χψ̄ψ/T
4 ∆χψ̄ψ/T

2 ∆χψ̄ψ ∆l,s L χs
this work 146(2)(3) 152(3)(3) 157(3)(3) 155(2)(3) 170(4)(3) 169(3)(3)

our work ’06 151(3)(3) - - - 176(3)(4) 175(2)(4)

RBCBC - 192(4)(7) - - 192(4)(7) -

Table 3. Continuum extrapolated transition temperatures at the physical point for different ob-

servables and in different works. See the text for explanation.

In the second line we provide our previously published results from 2006 [6]. Our

lattice results are in complete agreement with our earlier findings, the reason for the ap-

proximately 5 MeV shift to lower Tc values is almost completely due to the change of the

experimental value of fK provided by the Particle Data Group (155.5 MeV [14] instead of

159.8 MeV [15]). Without this change in the input parameter the change of the Tc values

would be about or less than 1MeV.

We also include into the table the combined physical quark mass and continuum extrap-

olated estimates of the RBC-Bielefeld collaboration (RBCBC) [2]. The RBCBC did not use

renormalized quantities, furthermore the transition temperature related to the Polyakov

loop is determined from the peak position of the Polyakov-loop susceptibility, which is

different from our definition. These differences are expected to be small compared to the

statistical and systematic uncertainties. The discrepancy between the temperature values of

the two collaborations is worryingly large, as it was already emphasized in the Introduction.

4 Conclusions, outlook

We have improved our previous calculations on the transition temperature [6] by three

means. First of all, the simulations for our zero temperature analysis have been done with

the physical values of the quark masses. Secondly, we extended our hadron spectrum, decay

constants, quark mass and static quark potential measurements. As a third improvement

we have decreased the lattice spacing at finite temperature by simulating Nt = 12 lattices

(and Nt=16 at one point).

For the first time in the literature we performed both the T = 0 and T > 0 analyses by

simulating directly with physical quark masses. This procedure eliminates all uncertainties

related to the extrapolation to the physical masses. The analysis confirms that the uncer-

tainty of our scale determination is less than about 2%. Moreover, all spectral quantities

are consistent with experiments and/or previous lattice calculations. This indicates that

the finite temperature results are independent of which quantity (Ω, K∗ or Φ mass, or the

pion decay constant) we chose for scale setting.

At finite temperature we determined the temperature dependence of several renormal-

ized quantities. As a generic feature of any crossover, the transition temperatures obtained

from different quantities are different, they range from 146 to 170 MeV. We have to empha-

size again that these numbers correspond to an infinite volume system. As an exploratory

study in quenched QCD shows [7], for the typical volumes and boundary conditions real-
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ized at heavy ion collisions, the transition temperatures can be up to 30 MeV higher than

the infinite volume values presented here and usually in the literature.

The new results at finite temperature are in good agreement with our previous findings.

Note, however, that in the last 2.5 years Particle Data Group has reduced the central value

of fK by about 3%, which reduces our Tc values in physical units by the same amount.

The lattice spacings used in this work are smaller than in any previous lattice study. As

a consequence, the lattice artefacts seem to be small, there are even quantities, where the

artefacts are not significant at all.

We have taken a closer look at the disagreement between the results of current ther-

modynamical calculations. We see approximately 20 − 35 MeV difference in the transition

regime between our results and those of the ’hotQCD’ collaboration. This difference can be

observed between the temperature dependence of the curves for all the quantities that we

have compared: the light quark chiral susceptibility, renormalized chiral condensate and

the strange quark number susceptibility. Finding the reason for this disagreement seems

to be a task for the future.

As a final remark we have to mention that the staggered formalism used in this work

and all other large scale thermodynamics studies may suffer from theoretical problems. To

date it is not proven that the staggered formalism with 2+1 flavors really describes QCD

in the continuum limit. Therefore it is desirable to also study QCD thermodynamics with

a theoretically firmly established (e.g. Wilson type) fermion discretization.
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